A neuroinductive biomaterial based on dopamine.
نویسندگان
چکیده
Chemical messengers such as neurotransmitters play an important role in cell communication, differentiation, and survival. We have designed and synthesized a bioactive biomaterial that derived its biological activity from dopamine. The resultant biodegradable polymer, PCD, has pendent groups bearing dopamine functionalities. Image analysis demonstrated that nerve growth factor-primed rat pheochromocytoma cells (PC12) and explanted rat dorsal root ganglions attached well and displayed substantial neurite outgrowth on the polymer surface. Furthermore, PCD promoted more vigorous neurite outgrowth in PC12 cells than tissue culture polystyrene, laminin, and poly(d-lysine). The histogram of neurite length of PC12 cells showed distinctive patterns on PCD that were absent on the controls. A subset of PC12 cells displayed high filopodium density on PCD. The addition of dopamine in culture medium had little effect on the differentiation of PC12 cells on tissue culture polystyrene. Tyrosine, the precursor of dopamine, did not exhibit this ability to impart specific bioactivity to an analogous polymer. Thus, the dopamine functional group is likely the origin of the inductive effect. PCD did not cause nerve degeneration or fibrous encapsulation when implanted immediately adjacent to the rat sciatic nerves. This work is a step toward creating a diverse family of bioactive materials using small chemical messengers as monomers.
منابع مشابه
From egg shell wastes (ESWs) into advanced materials: A rapid and simple synthesis of CaO/Ca2Fe2O5 as a novel nanocomposite-derived ESW biomaterial
AbstractESW as a natural byproduct, although non-hazardous and contains calcium, magnesium carbonate and protein, is commonly disposed in landfills without any pretreatment because it was traditionally useless. In this regards, we wish to report the synthesis of a novel CaO/Ca2Fe2O5 nanocomposite based on ESW. At the first, eggshell (ES) nanopowder was prepared by ball-milling. Then, the ...
متن کاملAlumina nanoparticles modified carbon paste electrode as a new voltammetric sensor for determination of dopamine
The present study examines a new dopamine sensor based on Alumina nanoparticles modified carbon paste electrode (Al2O3NPsCPE). Moreover, the present study focuses on the electrochemical act of the Al2O3NPsCPE for the detection of dopamine by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). There is also a focus on the specification of the prepared modified electrode by electroc...
متن کاملSimultaneous determination of dopamine and uric acid using a glassy carbon paste electrode modified with copper- para red complex
A simple approach based on cyclic voltammetry (CV) was developed for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) using a modified glassy carbon paste electrode (GCPE). In the present study, analytical parameters were optimized and electrochemical performance of modified electrode was investigated. The calibration curves were obtained ...
متن کاملAminothiophenol Furfural Self-assembled Gold Electrode Sensor for Determination of Dopamine in Pharmaceutical Formulations
A new Schiff base 2-aminothiophenol furfural self assembled monolayer (SAM) has been fabricated on a bare gold electrode as a novel sensor for determination of dopamine. Electrochemical impedance spectroscopywas utilized to investigate the properties of the Au 2-aminothiophenol furfural self assembled monolayermodified electrode (Au ATF SAM-ME) using the [Fe(CN)6]3-/4- redox couple. The electro...
متن کاملA Theoretical Study on Dopamine: Geometry, energies and NMR
The Dopamine has been studied theoretically at the B3LYP/6-31G* level were performed in gasphase. We calculated physical parameters like atomic charges, energy (=>), asymmetry parameter(?), chemical shift @iso, dipole moment and isotropic NMR determinant and in this work we usedGaussian 03 at NMR and calculation by using B3LYP methods with 6-31G* basis set.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 45 شماره
صفحات -
تاریخ انتشار 2006